266 research outputs found

    Content-Specific Broadcast Cellular Networks based on User Demand Prediction: A Revenue Perspective

    Full text link
    The Long Term Evolution (LTE) broadcast is a promising solution to cope with exponentially increasing user traffic by broadcasting common user requests over the same frequency channels. In this paper, we propose a novel network framework provisioning broadcast and unicast services simultaneously. For each serving file to users, a cellular base station determines either to broadcast or unicast the file based on user demand prediction examining the file's content specific characteristics such as: file size, delay tolerance, price sensitivity. In a network operator's revenue maximization perspective while not inflicting any user payoff degradation, we jointly optimize resource allocation, pricing, and file scheduling. In accordance with the state of the art LTE specifications, the proposed network demonstrates up to 32% increase in revenue for a single cell and more than a 7-fold increase for a 7 cell coordinated LTE broadcast network, compared to the conventional unicast cellular networks.Comment: 6 pages; This paper will appear in the Proc. of IEEE WCNC 201

    Tractable Resource Management with Uplink Decoupled Millimeter-Wave Overlay in Ultra-Dense Cellular Networks

    Full text link
    The forthcoming 5G cellular network is expected to overlay millimeter-wave (mmW) transmissions with the incumbent micro-wave ({\mu}W) architecture. The overall mm-{\mu}W resource management should therefore harmonize with each other. This paper aims at maximizing the overall downlink (DL) rate with a minimum uplink (UL) rate constraint, and concludes: mmW tends to focus more on DL transmissions while {\mu}W has high priority for complementing UL, under time-division duplex (TDD) mmW operations. Such UL dedication of {\mu}W results from the limited use of mmW UL bandwidth due to excessive power consumption and/or high peak-to-average power ratio (PAPR) at mobile users. To further relieve this UL bottleneck, we propose mmW UL decoupling that allows each legacy {\mu}W base station (BS) to receive mmW signals. Its impact on mm-{\mu}W resource management is provided in a tractable way by virtue of a novel closed-form mm-{\mu}W spectral efficiency (SE) derivation. In an ultra-dense cellular network (UDN), our derivation verifies mmW (or {\mu}W) SE is a logarithmic function of BS-to-user density ratio. This strikingly simple yet practically valid analysis is enabled by exploiting stochastic geometry in conjunction with real three dimensional (3D) building blockage statistics in Seoul, Korea.Comment: to appear in IEEE Transactions on Wireless Communications (17 pages, 11 figures, 1 table

    Asymptotic Behavior of Ultra-Dense Cellular Networks and Its Economic Impact

    Full text link
    This paper investigates the relationship between base station (BS) density and average spectral efficiency (SE) in the downlink of a cellular network. This relationship has been well known for sparse deployment, i.e. when the number of BSs is small compared to the number of users. In this case the SE is independent of BS density. As BS density grows, on the other hand, it has previously been shown that increasing the BS density increases the SE, but no tractable form for the SE-BS density relationship has yet been derived. In this paper we derive such a closed-form result that reveals the SE is asymptotically a logarithmic function of BS density as the density grows. Further, we study the impact of this result on the network operator's profit when user demand varies, and derive the profit maximizing BS density and the optimal amount of spectrum to be utilized in closed forms. In addition, we provide deployment planning guidelines that will aid the operator in his decision if he should invest in densifying his network or in acquiring more spectrum.Comment: This paper will appear in Proc. IEEE Global Commun. Conf. (GLOBECOM) 201

    User Attraction via Wireless Charging in Cellular Networks

    Full text link
    A strong motivation of charging depleted battery can be an enabler for network capacity increase. In this light we propose a spatial attraction cellular network (SAN) consisting of macro cells overlaid with small cell base stations that wirelessly charge user batteries. Such a network makes battery depleting users move toward the vicinity of small cell base stations. With a fine adjustment of charging power, this user spatial attraction (SA) improves in spectral efficiency as well as load balancing. We jointly optimize both enhancements thanks to SA, and derive the corresponding optimal charging power in a closed form by using a stochastic geometric approach.Comment: to be presented in IEEE International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt) Workshop on Green Networks (GREENNET) 2016, Arizona, USA (8 pages, 4 figures
    • …
    corecore